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a b s t r a c t

Accurate cortical thickness estimation is important for the study of many neurodegenerative diseases.
Many approaches have been previously proposed, which can be broadly categorised as mesh-based
and voxel-based. While the mesh-based approaches can potentially achieve subvoxel resolution, they
usually lack the computational efficiency needed for clinical applications and large database studies. In
contrast, voxel-based approaches, are computationally efficient, but lack accuracy. The aim of this paper
is to propose a novel voxel-based method based upon the Laplacian definition of thickness that is both
accurate and computationally efficient. A framework was developed to estimate and integrate the partial
volume information within the thickness estimation process. Firstly, in a Lagrangian step, the boundaries
are initialized using the partial volume information. Subsequently, in an Eulerian step, a pair of partial
differential equations are solved on the remaining voxels to finally compute the thickness. Using partial
volume information significantly improved the accuracy of the thickness estimation on synthetic phan-
toms, and improved reproducibility on real data. Significant differences in the hippocampus and temporal
lobe between healthy controls (NC), mild cognitive impaired (MCI) and Alzheimer’s disease (AD) patients
were found on clinical data from the ADNI database. We compared our method in terms of precision,
computational speed and statistical power against the Eulerian approach. With a slight increase in com-
putation time, accuracy and precision were greatly improved. Power analysis demonstrated the ability of
our method to yield statistically significant results when comparing AD and NC. Overall, with our method
the number of samples is reduced by 25% to find significant differences between the two groups.

Crown Copyright � 2009 Published by Elsevier B.V. All rights reserved.
1. Introduction

The measurement of cortical thickness from 3D magnetic reso-
nance (MR) images can be used to aid diagnosis or perform longi-
tudinal studies of a wide variety of neurodegenerative diseases,
such as Alzheimer’s. Manual measurements are labour intensive
and have a high variability. Accurate and automated software that
maps the three dimensional cortical thickness of the entire brain is
thus desirable.

The approaches used for cortical thickness estimation in the lit-
erature can be broadly categorised as mesh-based and voxel-based.
One common aspect of these techniques is the need for an initial
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classification of the different brain tissue type, namely gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF). Automatic
classification and cortical thickness measurement from MR images
are affected by artifacts such as intensity inhomogeneity, noise,
and partial volume (PV) effect. PV introduces considerable errors
in the measure due to the finite resolution of MR images
(�1 mm) compared to the size of the cortical structures
(�2�3 mm). Typically, two sulci banks in contact within a voxel
may appear connected if the CSF is not detected within the GM.
This results in erroneously high thickness estimates or topologi-
cally wrong surfaces of the brain.

Mesh based approaches use a deformable mesh to extract the
inner and outer boundaries of the cortex before measuring thick-
ness. Deformable model techniques fit closed parametric surfaces
to the boundaries between regions (Pham et al., 2000), such as the
inner (GM/WM) and outer (GM/CSF) boundaries of the cortex.
The main advantage of deformable model is the smoothness con-
straint, which provides robustness to noise and false edges. They
are also capable of operating in the continuous spatial domain
and therefore achieving subvoxel resolution. However, deformable
rights reserved.
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model are complex, incorporating methods to prevent self-inter-
section of surfaces or topology correction. Another disadvantage
of some of these approaches is the need for manual interaction
to initialize the model and to choose appropriate parameters. Some
implementations impose thickness constraints on the cortex (Zeng
et al., 1999; MacDonald et al., 2000) in order to model sulci. Fischl
and Dale (2000) imposed a self-intersection constraint, forcing the
surface to meet in the middle of sulci. A detailed comparison of
three well established methods, CLASP (Kim et al., 2005), BrainVISA
(Mangin et al., 1995), Freesurfer (Dale et al., 1999; Fischl and Dale,
2000) is presented in Lee et al. (2006). To our knowledge, CLASP
(Kim et al., 2005) is the only approach to explicitly model the par-
tial volume effect to fit the deformable mesh. It is however compu-
tationally intensive, with typical running time of over 20 h on a
standard PC, as reported in Lee et al. (2006).

In contrast, voxel-based techniques (Hutton et al., 2008; Diep
et al., 2007; Lohmann et al., 2003; Srivastava et al., 2003; Hutton
et al., 2002) operate directly on the 3D voxel grid of the image,
and are therefore more computationally efficient. Those methods
are however less robust to noise and mis-segmentation as they
typically lack the mechanisms required to assess and correct topo-
logical errors. They are also hampered by the MR limited resolu-
tion, in small and highly convoluted structures such as the GM
sulci, where partial volume effects are preponderant.

Cortical thickness can be estimated using several metrics. The
definition of thickness based on Laplace’s equation simulating
the laminar structure of the cortex, first introduced by Jones
et al. (2000), has gained wide acceptance. Haidar and Soul (2006)
showed that the Laplacian approach is the most robust definition
of thickness, compared to nearest neighbour and orthogonal pro-
jections, with respect to variations in MR acquisition parameters.
Lerch and Evans (2005) performed cortical surface reconstruction
and compared six cortical thickness metrics. They found that the
coupled surfaces method was the most reproducible, followed by
the Laplacian definition. However, the coupled surface method is
highly dependant on the scheme used to construct the surface.

Whereas Jones et al. (2000) explicitly traced streamlines
(Lagrangian approach), Yezzi and Prince (2003) proposed a more
efficient method that involves solving a pair of first order linear
partial differential equations (PDEs) without any explicit construc-
tion of correspondences (Eulerian approach). The major drawback
of the Eulerian approach is the limited accuracy when estimating
thickness, especially within thin structures since it is solved over
a discrete grid. The initialization of the PDEs affects the accuracy,
when the distance to the real boundary is not explicitly computed
ignoring the PV effect. A hybrid Eulerian–Lagrangian approach was
proposed by Rocha et al. (2007) to improve accuracy while pre-
serving efficiency, but for subvoxel initialization at tissue bound-
aries a precomputed surface was required. For clinical
applications, precision is of upmost importance. For example, the
expected change in GM thickness during the early stages of Alzhei-
mer’s disease has been shown to be less than 1mm in most brain
regions (Lerch et al., 2005; Singh et al., 2006).

Building upon Yezzi and Prince (2003), we have improved the
precision of the voxel-based thickness measurement by taking into
account the PV coefficients at the GM boundaries to appropriately
initialize the PDEs without previous upsampling and interpolation
of the images. Our scheme can be considered as a combined
Lagrangian–Eulerian approach: the boundaries are initialized with
an explicit integration along the streamlines achieving subvoxel
accuracy, and for the remaining grid points two PDEs are solved
as in the Eulerian approach, preserving the computational effi-
ciency. Unlike Rocha et al. (2007), the detection of the boundaries
is performed within the gray matter partial volume map, without
previous delineation of the surface. Rocha et al. (2007) additionally
proposed the correction for divergent streamlines in thick and
irregular structures, introducing a distance tolerance (k). In cortical
thickness this is unlikely to occur as the GM, which is a few mm
thick, spans one or two voxels (for a typical full brain MR resolu-
tion in a clinical setting: 1 mm � 1 mm � 1.2 mm).

In the remainder of this paper, we first describe the method. We
then validate the accuracy of our approach on synthetic data, and
its reproducibility on real MR data. In the final section, we apply
our cortical thickness estimation approach to a subset of the ADNI
database, including 43 healthy elderly individuals or normal con-
trols (NC), 53 mild cognitive impaired (MCI) and 22 Alzheimer’s
disease patients (AD). We compared our method against the Eule-
rian approach of Yezzi and Prince (2003). The ability of our method
to reach higher power when comparing two groups was demon-
strated, with good computational efficiency (30 min in average
on a standard PC).
2. Methods

The proposed method consists of several stages as depicted in
Fig. 1: firstly, 3D T1-weighted MR images are classified into GM,
WM and CSF in their original space using a priori probability maps
registered with an affine followed by non-rigid registration (Sec-
tion 2.1). Secondly, the fractional content of GM for the voxels
along tissue interfaces is computed by modelling mixture of tissues
and performing a maximum a posteriori classification (Section 2.2),
which results in a GM partial volume coefficients (GMPVC) map. In
a further step, a continuous GM layer covering the WM is obtained
(Section 2.3). Then, the thickness is computed with accurate initial-
ization of the PDEs (Section 2.4). Finally, regional statistical analy-
sis is performed using the automated anatomical labelling (AAL)
after extraction and smoothing of the cortical thickness map pro-
jected along the WM/GM boundary (Section 2.5).

2.1. Pure tissue segmentation

Based on the previously proposed expectation maximisation
segmentation (EMS) algorithm (Van Leemput et al., 1999a; Van
Leemput et al., 1999b), we have implemented a method for the
segmentation of brain tissues (GM, WM and CSF), which includes
a fourth order 3D polynomial-based bias field model and a Markov
Random Field (MRF) to improve spatial coherence, reducing the ef-
fects of noise. The probability density functions of the tissues are
modelled with six Gaussian functions (one for each of the main
three tissue types, and three for non-brain tissues including skull
and background). Colin atlas is first affinely registered to the data
using a robust block matching approach (Ourselin et al., 2001), fol-
lowed by a free form non-rigid registration (NRR) (Rueckert et al.,
1999) seeking to maximise normalised mutual information (Stud-
holme et al., 1998). Probabilistic tissue maps associated with the
atlas were used to initialize and guide the segmentation. NRR con-
trol points were restricted to 20 mm spacing to reduce computa-
tion time while achieving excellent matching. Smooth
deformation fields were obtained in less than 6 min on a standard
PC.

The resulting output probability maps (soft classifications) for
each class are discretised by assigning each voxel to its most likely
tissue type. Hard segmentations (Fig. 2b) and bias field corrected
images are used as an input for the partial volume estimation.

2.2. Partial volume classification

In this step, partial volume (PV) along tissue interfaces is esti-
mated by modelling mixtures of pure tissues and performing a
maximum a posteriori (MAP) classification. We adopted a two-
stage procedure relying on both intensity and spatial interaction
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Fig. 1. Overall process for cortical thickness estimation.

Fig. 2. (a) MR T1W image. (b) Initial GM hard segmentation from EMS. (c)
Computed GMPVC map. (d) GM pure tissue voxels (GMPVC = 1). The lost of
continuity in the GM is highlighted. (e) Continuity corrected GM grid. (f) Overlaid of
resulting thickness map and original MR image.
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similar to the one presented by Shattuck et al. (2001) and Tohka
et al. (2004). This scheme has been optimised to compute eventu-
ally a single map containing the fractional content of GM using the
hard segmentations and bias corrected images obtained after the
EMS algorithm. Since voxels containing partial volume are mostly
present along boundaries, PV evaluation is restricted to the region
formed by a dilated GM grid (radius 4).

In our implementation only three pure classes (GM, WM and
CSF) and two mixture classes (GM/CSF and GM/WM) are consid-
ered. Although there are some other possible combinations, they
are not taken into account as they are unlikely to occur (e.g. CSF/
WM or CSF/GM/WM) or they are not relevant (e.g. CSF-back-
ground). The labels are thus restricted to the set C = {GM, CSF,
WM, GM/CSF, GM/WM}. Pure voxels are assumed to have a Gauss-
ian probability density function, defined by its mean (l) and stan-
dard deviation (r). These values l and r are computed over the
bias field corrected MR image using the hard segmentations ob-
tained in the previous segmentation step. Mixed voxels, containing
at most two tissues, are modelled with a probability density func-
tion which uses weighted sums of Gaussians over all the possible
values of PV as proposed by Santago and Gage (1993). The labelling
is performed with a Potts model as in Shattuck et al. (2001) and
solved with the Iterative Condition Modes (ICM) algorithm (Besag,
1986). This model encourages configurations of voxels that are
likely to occur such as GM/CSF or GM/WM voxels adjacent to
GM, and guarantees spatial coherence of pure tissue segmentations
WM, GM and CSF.

Once voxels have been labelled using C, we compute for each
voxel the portion of pure tissue, called here fractional content,
which ranges between [0,1]. The fractional content Fj of voxels
classified as pure tissue are set to 1 for the class j and 0 otherwise.
For voxels classified as mixed, their fractional content Fj/k between
both pure tissues j and k is computed as in Shattuck et al. (2001),
using the bias corrected intensity ~xi and the means lj and lk of
the two pure tissue types obtained in the previous step as:

Fj=k ¼ U
lk � ~xi

lk � lj

 !
ð1Þ

where U(�) is a limiter restricting the range of the fractional content
to [0,1]. The final partial volume coefficients (PVC) map of GM used
for cortical thickness estimation is then obtained as GMPVC = FGM/

WM [ FGM [ FGM/CSF. Likewise, a GM grid is constituted with only
those voxels classified as pure GM tissue FGM. Fig. 2c and d shows
an example of computed GMPVC map and GM grid.

2.3. Correction of 3D GM grid

It is assumed that the GM is a continuous layer of neurons cov-
ering the WM surface. To compute a reliable GM thickness, a con-
tinuous domain (GM grid) is required where the PDEs can be
solved. Because in very thin regions (less than one voxel thick),
the partial volume classification step may introduce some gaps, a
further correction of the GM grid, obtained in Section 2.2, is re-
quired to enforce continuity. This is achieved by re-labelling any
voxel at the interface WM/CSF to GM. We implemented an algo-
rithm which checks whether in the 3 � 3 � 3 neighbourhood of
each WM boundary voxels there is any CSF voxel breaking the
GM/WM continuity, in which case it is reclassified as GM. Fig. 2e
depicts in an example the result of this reclassification at the GM
boundary after the pure tissue voxels (Fig. 2d) are selected. This
does not affect the measure of thickness as the algorithm relies
afterwards on the partial volume information, but it allows a reli-
able computation of laplace’s equation, and subsequent distance
functions as described in Section 2.4.

Restricting the GM mask to only pure tissue voxels provides a
good delineation of deep sulci as illustrated in Fig. 2d and e com-
pared to the initial GM segmentation shown in Fig. 2b. Further-
more, correcting for the WM/CSF gaps allows us to measure thin
GM zones, even when they span less than one voxel. The deep gray
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matter and GM detected around the ventricles is not taken into ac-
count for thickness estimation purposes.
Fig. 4. Unidimensional model of a voxel occupied by two pure tissues A and B. Top:
Voxel i � 1 contains only tissue A, voxel i contains both A and B and voxel i + 1
contains only tissue B. Bottom: PVC representation for the tissue A. The boundary
(x0) of A is found by linear interpolation at APVC = 0.5.
2.4. Thickness estimation

Once pure tissue segmentation and partial tissue classification
are performed, the thickness of the resulting GM is afterwards
computed following Jones’s definition (Jones et al., 2000) as shown
in Appendix A, but here in a combined Lagrangian–Eulerian ap-
proach. The reader should refer to Appendix A for the notation.
Fig. 3 illustrates the different steps yielding to a GM thickness
map. The Laplace’s equation r2f(x) = 0 is first solved within the
corrected GM grid obtained in Section 2.3. Then, a normalised gra-
dient vector field ~T of f(x) is computed as T

!¼ rf
krfk, which provides

several paths, or streamlines, guaranteeing a unique correspon-
dence between WM and CSF. The thickness is therefore the dis-
tance between WM and CSF along these paths, but projecting
them outwards into the GMPVC map to detect the real boundaries.
This is done by solving the Eulerian PDEs for the distances L0 and L1

within the discrete GM grid, as in Yezzi and Prince (2003), but after
a Lagrangian initialization using the GMPVC map.

To detect the real boundary without any resampling, for each
GM voxel sharing a boundary with one or more mixed voxel GM/
CSF (or GM/WM) we follow the streamline, in a ray casting scheme,
from the GM in the direction of T

!
(� T
!

, respectively). Assuming
that the point spread function is a boxcar, the boundary is the point
where the GM partial volume coefficient equals the CSF (WM,
respectively) partial volume coefficient. The implementation is
based on a dichotomy search restricted in one direction, with
decreasing stepsize down to � = 1/10�3 of the voxel size.

Fig. 4 illustrates the idea of the initialization in a 1D model of
voxels shared by two tissues A and B. Assuming the PVC map is
known, a simple model for the combined signal is the summed
fractional signals of tissues A and B. Let hx be the voxel size, a < 1
0mm
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Fig. 3. Combined Lagrangian–Eulerian thickness estimation.
the fraction of voxel i occupied by tissue A and APVC the discrete
PVC map for the tissue A. Because the PV is represented at the cen-
tre of the voxels, the boundary between A and B (between voxels
i � 1 and i) is the point (x0) where the interpolated PVC is equal
to 0.5, resulting in a measured size of the tissue A as hx + ahx. The
boundary point (x0), can be detected with a ray cast from the cen-
tre of the voxel i � 1 (tissue A) towards the mixed voxel i.

Figs. 5–7 shows un example of thickness computation of a 5.2
voxels thick structure (mimicking GM) in a regular grid. The spatial
sampling of the structure leads to its representation in both pure
and partial volumed voxels. To achieve an accurate measure, vox-
els being shared by two pure tissues are tagged within the corre-
sponding GMPVC map before computing their fractional content.
In this example, the fractional content of GM at the CSF boundary
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Fig. 9. Partial volumed voxels in deep sulci are composed of a mixture GM/CSF/GM
(GM in opposite directions) which can be reapportioned in mixtures GM/CSF and
CSF/GM.
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is 0.4 and the fractional content of GM at the WM boundary is 0.8.
Afterward, with the boundary conditions fixed at the WM and CSF
interfaces (0 and 1, respectively), Laplace’s equation is solved with-
in the pure tissue voxels and the gradient vector field is obtained
defining the streamlines between the WM and the CSF (Fig. 6).
The gradient vector field is regularised with a Gaussian convolu-
tion (typically r = 1 to reduce discretisation effects). Subsequently,
the Eulerian PDEs are solved within the GM grid after a Lagrangian
initialization at the boundaries (Fig. 7). Finally, the expected thick-
ness of 5.2 voxels is computed as W = L0 + L1.

Because of the thin and convoluted structure of the brain, spe-
cial care is taken for two configurations of partial volumed voxels.
Firstly, when GM voxels appear with low GMPVC values in thin re-
gions, as depicted in Fig. 8; Secondly, in deep sulci where mixed
GM/CSF voxels appear surrounded by GM in opposite directions
as depicted in Fig. 9. On one hand, in very thin structures after
the correction of the 3D GM grid, it might occur that for a given
voxel x within the GM grid at the boundary, the computed GMPVC
(x) < 0.5. In that case, the direction of the ray cast must be reversed
towards the actual position of the boundary supposedly inwards.
This means, for instance, that for a GM voxel lying on the GM/
CSF boundary and whose fractional content is lower than 0.5, the
ray r follows the streamline in the direction of � T

!
(opposite signs)

as shown in Fig. 8. On the other hand, in deep sulci it is common to
find mixed GM/CSF voxels surrounded by GM in opposite direc-
tions as depicted in Fig. 9. When the fractional content of GM is
computed it might not reflect the actual geometry of the structure,
leading to overestimated thickness if the ray casting approach is
used. Because of the spatial sampling, those voxels are indeed a
mixture of GM/CSF/GM. They are therefore split into two mixed
voxels (GM/CSF and CSF/GM) and their PVC is redistributed conse-
Fig. 8. Depending on the computed GMPVC for a given GM voxel x, two cases of
boundary detection are considered. When GMPVC > 0.5 the ray r follows the
direction of the unit vector field. The opposite when GMPVC < 0.5 as the boundary
has to be supposed inwards with respect to the centre of the voxel x.
quently according to the magnitude of the projection of the 3D unit
vector field T

!
over the rectangular grid.

2.5. Smoothing of cortical thickness maps and region-based analysis

Finally, when studying regional population changes, each indi-
vidual cortical thickness map is smoothed using the interquartile
mean (IQM) within a 5 mm radius sphere within the GM. Thus,
the effects of discontinuities is reduced. Smoothing is currently ap-
plied in many other methods when comparing populations and
assessing brain significant changes (Lerch et al., 2005; Hutton
et al., 2008). To overcome variability of the cortical folding, our
smoothing is performed on the WM/GM boundary, and restricted
to the connected components of the GM mask inscribed within
the sphere and thus respecting anatomical boundaries (Fig. 10).
After thickness estimation and smoothing, the automated anatom-
ical labelling (AAL) template (Tzourio-Mazoyer et al., 2002) is
mapped to the patient, using the deformation field previously com-
puted, resulting in a list of mean thickness per region to be used for
interindividual comparisons, as shown further in this paper.
3. Experiments and results

This section describes the experiments performed to evaluate
the proposed method. Our approach was to validate each step sep-
arately on both phantoms and real data, then test the reproducibil-
ity on the overall technique and, finally, show the results of a study
on clinical data. We also compared the performance of our method
with the Eulerian implementation as proposed by Yezzi and Prince
(2003) ignoring the PV. All the algorithms were implemented in
C++, using the open source ITK libraries. Tests were performed on
a Dual Core 2.4 GHz computer running linux.

3.1. Fractional content and PV validation

To evaluate the accuracy of the fractional content computation
and PV labelling, experiments were performed on BrainWeb simu-
lated data set (Kwan et al., 1996; Collins et al., 1998). The images
had an isotropic voxel resolution of 1 mm3 and varying degrees
of noise and intensity inhomogeneity. The resulting PV maps were



Fig. 10. Example of cortical smoothing. (a) Computed cortical thickness map. (b)
Smooth map of GM/WM surface using a 5 mm radius sphere over the connected
components. (c and d) Marching cubes rendering of voxel maps (a) and (b),
respectively.

Fig. 11. Example of partial volume classification on simulated MR data: (a) Initial
MR T1 weighted Image (noise 3%, bias field 20%), (b) Hard GM segmentation
obtained with EMS algorithm, (c) Ground truth PV map, and (d) Computed GMPVC
map.
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compared with the ground truth fractional volumes using the root
mean square error (RMS).

The low RMS error (Table 1) demonstrates that most of the par-
tial voluming occurs along tissue boundaries validating the PV
labelling assumption. A higher RMS error for CSF is attributed to
the fact that the mixture between CSF and background is not con-
sidered by our model. Fig. 11 shows an example of partial volume
classification on a BrainWeb simulated image (noise 3%, bias field
20%), compared to the ground truth.

3.2. Accuracy of the thickness measurement over phantoms

To determine the accuracy of the thickness measurement using
PV estimation, experiments over synthetic spherical shells with
constant thickness and a spiky shell, mimicking cortical folds, were
performed. To simulate the partial voluming occurring at the
boundary of a real object when discretised, the binary phantoms
were first generated on a high resolution grid (N � N � N, with
N = 1100) with 0.1 mm3 spacing and resampled to a lower resolu-
tion similar to actual MR. The value of each voxel was defined by
the percentage of non-zero voxels within the region covered by
this voxel on the original grid.

3.2.1. Spherical shell
A hollow sphere with inner radius r = 20 mm and external ra-

dius R = 23 mm was constructed to define a size and thickness sim-
Table 1
Average RMS error per level of noise of the fractional content of PV voxels.

Noise 1% Noise 3% Noise 5% Noise 7% Noise 9%

GM 0.17 0.08 0.07 0.08 0.10
WM 0.02 0.01 0.02 0.05 0.09
CSF 0.27 0.28 0.31 0.33 0.35
ilar to the ones of the brain cortex. Fig. 12 depicts an example of
simulated PVC map for an isotropic 0.5 mm sphere and the com-
puted thickness differences when the PVC is taken into account.
Fig. 13 shows the computed thickness around the sphere (angles
between 0 and p/2) at a single slice with and without PVC. The re-
sults of thickness estimation for different resolution spheres is
shown in Table 2. A further comparison was performed taking into
account voxels PVC > 0.5. The results showed that with PVC, accu-
rate measurements can be performed for both isotropic and aniso-
tropic data and that accuracy is proportional to the image
resolution. The errors caused by the partial volume effect on the
sphere mean thickness were greatly reduced with the use of PVC
Fig. 12. Example of thickness computation for a 3 mm synthetic hollow sphere
(isotropic 0.5 mm spacing). (a and b) PVC map generated from a high resolution
sphere. (c) Computed thickness with initialization at negative half of the voxel
spacing. (d) Computed thickness with PVC initialization.



ig. 14. Thickness computation for the spiky phantom. (a) Semitransparent 3D
iew. (b) 2D cutplane of simulated WM, GM and CSF layers. (c) Pseudo ground
uth: computed thickness at high resolution (HR). (d) PVC map generated by
bsampling the original phantom by a factor of 8. Computed low resolution
ickness maps (e) without using the PVC (only pure tissue voxels), (f) thickness

sing the PVC > 50%, (g) thickness using PVC map.

Table 3
Comparison of thickness for the synthetic original spherical spiky shell. High
resolution phantom (0.1 mm3) and low resolution phantom (0.8 mm3), initializing
without and with PVC maps.

Resolution Mean(mm) ± SD Max Min

Original phantom 0.1 � 0.1 � 0.1 3.14 ± 0.19 3.74 2.86
Pure tissue 0.8 � 0.8 � 0.8 2.08 ± 0.28 2.60 1.45
PVC > 50% 0.8 � 0.8 � 0.8 4.07 ± 0.23 4.49 3.62
With PVC 0.8 � 0.8 � 0.8 3.24 ± 0.19 3.90 2.98
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Fig. 13. Comparison of computed thickness for the 0.5 � 0.5 � 0.5 mm sphere. The
thickness was measured around the WM/GM surface in the central slice, with
angles ranging between 0 and p/2.

Table 2
Comparison of thickness accuracy for the 3 mm thick spheres. using Yezzi’s approach:
(i) without taking into account the PVC (only pure tissue voxels), (ii) taking into
account only the voxels whose PVC > 50% and (iii) with our approach using the PVC.

Resolution NO PVC map PVC>50% With PVC map
Mean ± SD Mean ± SD Mean ± SD

0.5 � 0.5 � 0.5 2.86 ± 0.08 2.86 ± 0.09 3.01 ± 0.01
0.5 � 0.5 � 1 2.80 ± 0.16 2.81 ± 0.17 3.02 ± 0.02
1 � 1 � 1 2.72 ± 0.17 2.74 ± 0.16 3.04 ± 0.02
1 � 1 � 1.5 2.68 ± 0.24 2.70 ± 0.24 3.05 ± 0.08
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maps. For a 1 mm3 resolution image the error was reduced from
9.33% to 1.33%. As expected, without the PVC map the thickness
measurements were as accurate as with the PVC only along the
orthogonal axes of the sphere and when the borders coincide with
the spatial sampling, whereas the error was increased in oblique
directions. Similar results were found when PVC map was thres-
holded to 0.5. In contrast, when the PV map was used and the
boundaries were initialized according to the direction of the struc-
ture an accurate measurement over the entire sphere was com-
puted. The combined Eulerian–Lagrangian approach used in
average 38% more computation time for these examples. The in-
crease was due to the intialization using the ray casting at the
boundary. As an example, for the sphere with the largest amount
of GM voxels (139429, for the 0.5 mm3) the computation time
incremented from 1.585 s to 2.005 s.

3.2.2. Spiky shell
A synthetic phantom consisting of a 3D donut shape with a sim-

ulated layer of tissue was constructed. The equivalent of WM was
first created in a high resolution 2D binary image (256 � 256) of a
circle with four added spikes (mimicking four gyri):

I ¼ 1; D < 20þ 30:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð4ptÞ

p
; t 2 ½0;1�

0; Otherwise

(
ð2Þ

where D is the distance to the centre of the image. The diameter in
the vertical direction was set to 70% of the one in the horizontal
direction. The binary image was then dilated by a disk of 30 voxels
to simulate the equivalent of a GM layer (Fig. 14b). The resulting
image was then rotated around its vertical axis to create a donut
like shape within a 512 � 512 � 256 volume (Fig. 14a).

To create a pseudo ground truth, the thickness of the GM layer
of the high resolution volume was computed using the Laplacian
method (Fig. 14c) and then downsampled by a factor of 8 resulting
in a 64 � 64 � 32 volume. The WM, GM and CSF layers were also
subsampled, resulting in the PVC maps used for the thickness com-
F
v
tr
su
th
u

putation at low resolution. Fig. 14 shows the high resolution phan-
tom, the GMPVC map generated and the estimated thickness.

Thickness computation at low resolution with and without
using the PVC were evaluated. The results, presented in Table 3,
showed that the thickness estimation with PVC map used for ini-
tialization was more stable and accurate in all areas of the phan-
tom. This effect can be appreciated in the central region (thin
WM), where most of the voxels are being shared by GM voxels in
opposite directions. When the PVC map was thresholded at 50%
of GM, the computed thickness was higher.

3.3. Experiments and results using real MR data

3.3.1. Patients
Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://www.loni.ucla.edu/ADNI). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Insti-
tute of Biomedical Imaging and Bioengineering (NIBIB), the Food

http://www.loni.ucla.edu/ADNI


Fig. 15. Cortical thickness maps (a and c) without using PVE and (b and d) with the
proposed approach. A natural delineation of the sulci is achieved by taking into
account the partial volume effect.
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Fig. 16. Comparison of mean cortical thickness of the 17 subjects computed from
two different scans and with the two methods: (i) No PVE as in Yezzi’s approach and
(ii) proposed method using the PV.
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and Drug Administration (FDA), private pharmaceutical companies
and non-profit organisations, as a $60 million, 5-year public–pri-
vate partnership. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzhei-
mer’s disease (AD). Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers and cli-
nicians to develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials. The Principle
Investigator of this initiative is Michael W. Weiner, M.D., VA Med-
ical Center and University of California – San Francisco. ADNI is the
result of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the US and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55–90, to partic-
ipate in the research – approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with MCI to be
followed for 3 years, and 200 people with early AD to be followed
for 2 years. For up-to-date information see http://www.adni-
info.org.

3.3.2. Reproducibility of the thickness measurement
To evaluate the reproducibility of the method, we selected 17

subjects (eight NC, eight MCI and one AD) from the ADNI database,
who underwent a baseline and a repeat scans during the same ses-
sion. Only patients who had the highest quality ratings for both
images were kept. All patients were imaged on a 1.5 T scanner with
in-plane resolution of 0.94 � 0.94 mm, 1.25 � 1.25 mm and
1.30 � 1.30 mm, and slice thickness of 1.2 mm (Detailed informa-
tion about MR acquisition procedures is available at the ADNI web-
site www.adni-info.org). All images were corrected for gradient
non-linearity distortion, intensity non-uniformity, and were scaled
for gradient drift using the phantom data.

We computed the thickness using the proposed approach and
compared the results with the Eulerian approach as proposed by
Yezzi (without taking into account partial volume effects). Fig. 15
shows an example of cortical thickness maps computed with the
two methods. Fig. 16 shows the differences between the two mea-
sures as an average of the cortical thickness in the full brain. If the
PV is not taken into account, a mean ± SD(std. dev.) cortical thick-
ness of 3.104 mm ± (0.18) was computed over the whole brain for
all the subjects, whereas a value of 2.18 mm ± (0.18) was obtained
with the proposed approach.

In order to assess the precision of the two methods, the sum of
square of differences was computed for each region of the AAL
template (Tzourio-Mazoyer et al., 2002). The cerebellum and sub-
cortical nuclei were excluded from the analysis. The average for
all the regions was 0.13 with the Eulerian approach and only
0.08 with the proposed method. Besides the tendency of thickness
overestimation, higher variability was evident for sulci detection in
some regions when the PV was not taken into account as shown in
Fig. 15. Indeed, because of the spatial sampling, the sulci may be
well delineated from one of the acquisitions and mis-detected from
the other, detrimental to the reproducibility.

3.3.3. Computational performance
On real 3D MR data (166 � 256 � 256 voxels) the entire proce-

dure to compute the cortical thickness took in average 30 min over
the 17 individuals from ADNI. Most of the time was spent on the
initial pure tissue classification (9 min in average + 6 min registra-
tion) and in the partial volume labelling (10 min in average). This
step is computationally expensive because of the multiple neigh-
bourhood iterations in the ICM for the MAP classification. Once
the WM, GM, CSF and GMPVC are available, the computation time
for cortical thickness estimation slightly differs between the Eule-
rian and the proposed combined Lagrangian–Eulerian approach.
Fig. 17a shows the differences in number of voxels against compu-

http://www.adni-info.org
http://www.adni-info.org
http://www.adni-info.org
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Fig. 17. Comparison in computation time, for the cortical thickness estimation part, between the two approaches on real MR data: Eulerian (NO PVE) and Combined
Lagrangian–Eulerian (PVE). (a) GM grid size vs. total time. (b) Disaggregated times for each one of the steps. LE: SOR computation of Laplace’s Equation, GVF: Computation of
Gradient Vector Field, DIST INI: Initalization of PDEs at the boundaries (Lagrangian in PVE case), DIST: computation time for distances functions L0 and L1. When the PV is
being used, most of the computation time is spent in the Lagrangian initialization, however this time is compensated by the reduced number of voxels being included in the
grid for the Eulerian part.
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tation time for both approaches. The Eulerian approach is slightly
faster, but the number of voxels of the GM grid increased because
the partial volumed voxels were included in the computation. In
the proposed approach, the size of the GM grid was reduced by
40% (272,535–163,954 in average), resulting in a smaller domain
where the PDEs are solved. Thus, Laplace’s equation and the dis-
tance equations with the current implementation are computed
in less time. In average 7.2 s vs. 2.1 s for the Laplace equation
and 21.7 s vs. 8.5 s for the distances. This difference compensates
for the relatively expensive computation of the boundaries with
the Lagrangian initialization when the PVE is taken into account
(18.5 s in average). Fig. 17b depicts the computation time for the
different steps constituting the cortical estimation part. (Solution
to Laplace’s equation, Computation of Gradient Vector Field, Dis-
tances Initialization at the boundaries and Solution to Distance
equations.)
3.3.4. Cortical thickness differences between healthy controls (NC),
MCI and AD

In this study, we investigated the ability of our method to detect
regional cortical thickness differences between NC, MCI and AD.
We selected 22 AD patients (mean age at baseline 75.58 ± 5.69,
mean MMSE 23.41 ± 1.79), 53 MCI (mean age at baseline
Table 4
Differences in cortical thickness between the NC–MCI, MCI–AD and NC–AD groups comput
Inferior temporal gyrus; MTG, Middle temporal gyrus; STG, Superior temporal gyrus; An
corrected p < 0.05.

Structure NC vs. MCI MCI vs. AD

Difference (mm) p-Value %Atrophy Difference (mm)

Hipp L 0.566 <0.001 17.67* 0.200
Hipp R 0.432 <0.001 14.25* 0.308
Ang L 0.292 <0.001 10.36* 0.127
Ang R 0.244 0.002 9.19 0.106
STG L 0.247 <0.001 9.68* 0.056
STG R 0.254 <0.001 9.49* 0.062
ITG L 0.323 0.002 8.57 0.174
ITG R 0.305 <0.001 8.16 0.180
PHG L 0.298 <0.001 7.98 0.172
PHG R 0.236 0.002 6.25 0.344
MTG L 0.283 <0.001 9.27* 0.080
MTG R 0.237 0.005 7.57 0.128
75.51 ± 7.70, mean MMSE 27.02 ± 2.00), 43 NC (mean age at base-
line 74.46 ± 5.06, mean MMSE 28.85 ± 1.22). All images were iden-
tified in the ADNI database as best in terms of the quality ratings,
and underwent the same preprocessing as described in the previ-
ous section.

Comparisons between the three groups were carried out using
the mean thickness by region. Two sample t-tests were performed
between NC/MCI, MCI/AD and NC/AD to identify regions where a
significant atrophy exists, with a p < 0.05, corrected for multiple
comparisons using false discovery rate (FDR). The results show sig-
nificant differences between the three groups (Table 4, Figs. 18 and
19). As expected, the thickness was lowest for the AD group, the
highest was for the NC group, whereas the MCI patients show
intermediate thickness values. The largest variances in the mea-
sure were found within the MCI, which is consistent with the het-
erogeneity of this group. The most important differences were
found when comparing NC against MCI, compared to the differ-
ences between MCI and AD. Despite the atrophy measured in some
affected regions when comparing MCI and AD, they are not signif-
icant, as revealed by the p-values.

The most significant differences (p-values) were found in some
regions of the temporal lobe, the parietal lobe and the frontal lobe
in both the NC/MCI and NC/AD comparisons. The smallest atrophy
was found in the occipital lobe.
ed with the proposed method. Hipp, Hippocampus; PHG, Parahippocampal gyrus; ITG,
g, Angular. The star sign (*), indicates significantly atrophied regions, using a FDR-

NC vs. AD

p-Value %Atrophy Difference (mm) p-Value %Atrophy

0.198 7.59 0.766 <0.001 23.92*

0.019 11.83 0.740 <0.001 24.40*

0.318 5.03 0.420 <0.001 14.87*

0.325 4.40 0.351 <0.001 13.18*

0.490 2.41 0.302 <0.001 11.85*

0.424 2.56 0.315 <0.001 11.81*

0.174 5.05 0.497 <0.001 13.18
0.192 5.25 0.486 <0.001 12.99
0.101 5.02 0.470 <0.001 12.59*

0.001 9.72 0.580 <0.001 15.37*

0.452 2.89 0.364 <0.001 11.89*

0.283 4.44 0.365 <0.001 11.68*
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Fig. 18. Difference in thickness among the three groups for different regions. (a) Parahippocampal gyrus (PHG),(b) hippocampus (Hipp), (c) supramarginal gyrus (SMG), (d)
middle temporal gyrus (MTL), (e) angular gyrus, and (f) superior temporal gyrus (STG).
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Although the whole temporal lobe was affected, the strongest
differences were revealed in the hippocampus and parahippocam-
pal gyrus. As can be appreciated in Fig. 19, there was a progressive
thinning of the inferior and middle temporal gyri, then superior
temporal gyrus.

In the parietal lobe, the most significant differences appeared in
the angular gyrus (NC–MCI: 0.29 mm; NC–AD: 0.42 mm), the pos-
terior cingulate region, supramarginal gyrus and parietal inferior
gyrus. The atrophy was in general bilateral except in the precuneus
region, where the right (NC–AD: 0.38 mm) appeared more affected
than the left (NC–AD: 0.23 mm).

In the frontal lobe, the superior gyrus appeared slightly more af-
fected than the middle and inferior gyri. Although a small atrophy
was found in the orbitofrontal region, the differences were not sig-
nificant (p > 0.1).

Table 4 shows the differences between the three groups for
some selected regions. The star sign (*), indicates significantly atro-
phied regions, using a FDR-corrected p < 0.05. Fig. 18 illustrates the
differences for four regions using box plots and Fig. 19 depicts the
regional differences over the generic AAL template.

Cortical thickness was also computed for the same individuals
using Eulerian approach as in Yezzi and Prince (2003) and without
taking the PVC into account. When comparing with the Eulerian
approach, the number of regions with significant atrophy de-
creased (using a FDR-corrected p < 0.05). For example, for the com-
parisons NC/AD, atrophy in superior temporal and middle
temporal gyri were not detected as significant, whereas they were
detected with the proposed method. Similarly for the comparison
between NC/MCI, which showed significant changes in the hippo-
campus and temporal lobe, whereas only the hippocampus left was
detected as significant with the Eulerian approach.

3.3.5. Power analysis comparison with the Eulerian approach
When the PVC was not taken into account, the differences de-

tected between the groups decreased and were on average less sig-
nificant. It should be noted that the atrophy in the brain differs



Table 5
Power analysis for cortical thickness estimation with two approaches to differentiate
betweeen AD and NC groups. a = 0.05, power = 0.95. d is the effect size and n is the
number of samples needed to reach that power. Hipp, hippocampus; PHG, Parahip-
pocampal gyrus; MTG, Middle temporal gyrus; STG, Superior temporal gyrus; Ang,
Angular gyrus.

Structure NO PVE PVE

n d n d

Full brain 62 0.847 46 1.006
Ang L 46 1.004 32 1.228
Ang R 52 0.939 30 1.251
STG L 52 0.929 34 1.169
STG R 54 0.9153 30 1.247
SFG L 19 0.804 11 1.117
SFG R 36 0.560 19 0.803
PHG L 54 0.914 24 1.4027
PHG R 24 1.406 18 1.6942
Hipp L 28 1.327 30 1.276
Hipp R 30 1.263 26 1.368
MTG L 46 0.998 32 1.215
MTG R 56 0.953 28 1.276

Fig. 19. AAL template showing the regional mean cortical thickness difference between the groups over the surface. Top: NC and AD; Bottom: NC and MCI. Left: lateral and
Right: medial views.
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depending on the location but when the whole brain thickness was
considered, the mean difference between healthy controls and AD
was 0.27 mm (p < 0.001) without the PVC, compared to 0.31 mm
(p < 0.001) with the proposed method. Similarly, the difference be-
tween NC and MCI was 0.22 mm (p < 0.001) without the PVC and
0.22 mm (p < 0.001) with the proposed approach. Although the dif-
ferences are still statistically significant in both cases, with Yezzi’s
approach atrophy was estimated to be less pronounced across the
brain in almost all the AAL regions. In order to compare the ability
of both methods to differentiate cortical thickness in healthy con-
trols vs. AD, power calculations were performed per AAL region on
both sets of results using a general power analysis program called
G*Power 3 (Faul et al., 2007).2 Sub cortical gray nuclei regions were
excluded from the analysis. In both cases the significance level (a as
type I error probability) was set to 0.05 and the power, defined as
1 � b was set to 0.95. For each method, we answer the question of
how many individuals n are needed to find significant differences be-
tween AD and NC. Table 5 summarizes the results for some of the
AAL regions typically atrophied in Alzheimer’s disease. Overall, the
number of individuals needed to detect significant changes between
AD and NC is reduced by 25% when our method is used. Likewise, the
effect size (d) was larger, which suggests that more subtle changes
can be detected. The opposite appeared only in the left hippocampus
(28 vs. 30 individuals); nevertheless, the hippocampus is the largest
structure to be measured, with an average thickness above 5 mm,
where the partial volume effect is not as prominent as in other thin-
ner regions. Fig. 20 depicts the power as a function of the sample size
for the full brain.
4. Discussion and conclusion

We have described a novel voxel-based method for accurate
and reproducible cortical thickness estimation, which uses partial
volume classification to achieve subvoxel accuracy. The main con-
2 http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/.
tribution of our method is the preservation of the efficiency of the
Eulerian approach while improving the accuracy through a better
initialization. Unlike other approaches, all the calculations are per-
formed on the discrete grid. The method is fully automatic and
simple, using a ray casting technique in the direction of the tangent
field, such that the estimated boundary defines an equilibrium be-
tween the shared fractional content. For the most challenging
cases, where a PV voxel shares its boundary with two or more pure
voxels in opposite direction, the tangent field cannot be used and
the fractional content is equally distributed amongst the opposite
voxels.

One advantage of our approach, compared to published mesh-
based techniques, is its speed. In addition, we performed extensive
experiments on phantoms that showed high accuracy for a wide
range of configurations. The full algorithm, including atlas non-ri-
gid registration, segmentation, PV estimation, thickness estima-

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
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tion, smoothing and regional statistics extraction runs under
30 min on a standard PC, compared to the 20 h reported by
mesh-based methods. Compared to other voxel-based techniques,
the computational cost was marginally increased because of the
MAP classification of partial volume voxels. However, once the
three tissues were classified and the GMPVC was computed, the
time for thickness computation was similar. This is due to the
reduced number of voxels to be computed with the Eulerian
approach and the efficiency of the Lagrangian initialization,
performed with a ray casting method and a dichotomy search at
the GM boundary. If the number of voxels were the same, our
method would be slightly more expensive, but still as efficient
and accurate as required for clinical studies.

Intensity-based segmentation methods may overestimate cor-
tical thickness in challenging cases such as buried sulci. This is-
sue has been previously treated as a post-processing step using
thickness constraints to cut the sulci and preserve the topology.
Unlike existing methods, our approach implicitly delineates most
sulci because the initial binary segmentation is reclassified into
pure and mixed voxels. This improves the detection in highly
convoluted regions where partial volume effect is more
pronounced.

There is no gold standard of cortical thickness estimation, or
even accepted ways to measure the thickness on highly convoluted
surfaces. Our approach in this paper was to validate each step sep-
arately on both phantoms and real data, and then test the repro-
ducibility on the overall technique. The PV estimation was
validated against the BrainWeb dataset and the thickness estima-
tion was validated on simulated phantoms, showing excellent
accuracy on both isotropic and anisotropic data. The reproducibil-
ity of the technique was then evaluated on real data, showing a
good agreement between the baseline and repeat scans. A study
on clinical data showed regional differences between healthy el-
derly individuals, individuals with mild cognitive impairment
and Alzheimer’s disease patients. The most significant atrophy
was measured in the temporal lobe when comparing NC to MCI
and NC to AD, which is consistent with the published literature
(Lerch and Evans (2005)).

When comparing with other voxel-based approach without tak-
ing into account the PV, our technique produced better results as it
was more able to detect subtle differences in cortical thickness.
When the PV was ignored, precision was compromised as there
was a tendency to overestimate the thickness in some areas on
phantom studies. In population studies the precision is important
as it is related to the ability in differentiating between groups.
We proposed a method with more statistical power as compared
with the classical Eulerian approach. Evidence suggests that with
groups reduced by 25% the proposed method will be able to yield
a statistically significant result. When considering the structures
first affected in Alzheimer’s disease such as the temporal lobe,
the number of the individuals to obtain statistically significant dif-
ferences can be reduced by up to 39% in average.

In the future, we plan to use our technique on clinical data to
study cortical atrophy in other neurodegenerative diseases. We in-
tend also to develop techniques for voxel-based inter-subject com-
parisons, a challenging issue given the large anatomical variability
between patients.

Acknowledgements

Data collection and sharing for this project was funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI; Principal
Investigator: Michael Weiner; NIH Grant U01 AG024904). ADNI
is funded by the National Institute on Aging, the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), and through
generous contributions from the following: Pfizer Inc., Wyeth Re-
search, Bristol-Myers Squibb, Eli Lilly and Company, GlaxoSmithK-
line, Merck & Co. Inc., AstraZeneca AB, Novartis Pharmaceuticals
Corporation, Alzheimer’s Association, Eisai Global Clinical Develop-
ment, Elan Corporation plc, Forest Laboratories, and the Institute
for the Study of Aging, with participation from the US Food and
Drug Administration. Industry partnerships are coordinated
through the Foundation for the National Institutes of Health. The
grantee organization is the Northern California Institute for Re-
search and Education, and the study is coordinated by the Alzhei-
mer’s Disease Cooperative Study at the University of California, San
Diego. ADNI data are disseminated by the Laboratory of Neuro
Imaging at the University of California, Los Angeles.

Appendix A. Cortical thickness and the boundary conditions

In the original method (Jones et al., 2000) the Laplace’s equation
is solved in the GM volume (with the WM and CSF adjacent to the
boundaries of the GM set to fixed potentials) such that:

r2f ðxÞ ¼ 0 ðA:1Þ

The normalised gradient of the Laplace solution provides several
paths, or streamlines, between the WM and CSF, which do not inter-
sect, are locally perpendicular to the equipotential sublayers, and
guarantee a unique correspondence between the two boundaries
following a tangent vector field T

!
(see Fig. A.2), computed as

T
!¼ rf

krfk : ðA:2Þ

Thus, the thickness W(x) at a given point x is computed by the sum
of two functions L0(x) and L1(x) measuring, respectively, the arc
length of the streamline from the WM to x and from the CSF to x
(Fig. A.1).

An explicit integration of T
!

(� T
!

) between x and the CSF (WM,
respectively) following the streamlines can be used to compute
L1(x) (L0(x), respectively). This approach, called Lagrangian, is com-
putationally expensive since each trajectory is explicitly traced.
Yezzi and Prince (2003) proposed an Eulerian approach whereby
a pair of first order partial differential equations are solved to com-
pute the length of the trajectories without explicitly tracking the
streamlines:

rL0 � T
!¼ 1

�rL1 � T
!¼ 1

ðA:3Þ



x

CSF
Streamlines

GM

WM

L1(x)

L0(x)

T

Fig. A.1. Distance equations L0 and L1 for computation of thickness W at a given
point x. Thus, W(x) = L0(x) + L1(x).
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Fig. A.4. Initialization according to Diep et al. (2007).
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with boundary conditions L0(x) = 0, L1(x) = 0, " x 2 [WM,CSF]. Rocha
et al. (2007) showed that the main advantage of the Eulerian ap-
proach is the computational speed. However, its major drawback
is the loss of accuracy, which is emphasised when the anatomical
structures, such as the GM, are small compared to the spatial reso-
lution (see Fig. A.2).

The most important factor affecting the precision of the Euleri-
an approach for computing the thickness in the GM layer is the
choice of initial boundary conditions for L0 and L1. In Yezzi and
Prince (2003) they are fixed to 0, implicitly assuming that the
boundaries coincide with the centre of the grid points, producing
an overestimation of the thickness when L0 and L1 are summed.
Fig. A.3 illustrates this bias effect on a 1 mm spacing grid.

Initialization of the boundaries to half of the negative mean
voxel spacing (i.e. �0.5 for 1 mm spacing isotropic images as
shown in Fig. A.4), as proposed by Diep et al. (2007), produces
the correct thickness but only for isotropic images, when the
boundaries coincide with voxels borders (no partial volume effect)
and they are aligned to the grid. Other possibilities imply upsam-
pling and interpolation, but with high computational costs.
WM

GM

Pure tissue 
Segmentation

f

f
T

∇
∇=

Gradient Vector
Field 

Fig. A.2. Representation of initial pure tissue segmentations (WM, GM and CSF) and
computation of the normalised gradient vector field.
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Fig. A.3. Since the distances are measured from the centre of the voxels, the
initialization of the boundaries at 0 as in Yezzi and Prince (2003) leads to an
overestimation of the thickness W = L0 + L1.
Appendix B. Numerical implementation: finite differences for
anisotropic images

To avoid resampling when the images are anisotropic, we solve
iteratively the Laplace finite difference approximation as in Diep
et al. (2007). Thus, given a 3D grid with voxel spacing hx, hy and
hz, in the x, y and z directions, respectively,

ftþ1ði; j; kÞ ¼
1

2ðh2
yh2

z þ h2
x h2

z þ h2
x h2

yÞ
h2

yh2
z ftðiþ hx; j; kÞ½

�
þ ftði� hx; j; kÞ� þ h2

x h2
z ftði; jþ hy; kÞ þ ftði; j� hy; kÞ
� �

þ h2
x h2

y ftði; j; kþ hzÞ þ ftði; j; k� hzÞ½ �
�

ðB:1Þ

where ft+1(i, j,k) is the potential of the voxel (i, j,k) during the
(t + 1)th iteration.

Given the unit vector field T
!

, the finite difference approxima-
tions used to solve (A.1) are also generalised for anisotropic
images. To reduce the effects of voxelisation when computing
the finite differences, first, a regularised tangent field perpendicu-
lar to the structure is obtained by

Tr
�! ¼ Gr � T

!
; ðB:2Þ

where Gr is a Gaussian function (r = 1), convolved with each one of
the components of T

!
from Eq. (A.2). Using Tx[i, j,k], Ty[i, j,k] and

Tz[i, j,k] as the components of Tr
�!

at the grid point (i, j,k)

L0ði; j; kÞ ¼
1

hyhzjTxj þ hxhzjTyj þ hxhyjTzj
� hxhyhz þ hyhzjTxjL0ði� hx; j; kÞ
�
þ hxhzjTyjL0ði; j� hy; kÞ þ hxhyjTzjL0ði; j; k� hzÞ

�
ðB:3Þ

L1ði; j; kÞ ¼
1

hyhzjTxj þ hxhzjTyj þ hxhyjTzj
� hxhyhz þ hyhzjTxjL1ði	 hx; j; kÞ
�
þ hxhzjTyjL1ði; j	 hy; kÞ þ hxhyjTzjL1ði; j; k	 hzÞ

�
ðB:4Þ

wherewhere

i	 hx ¼
iþ hx; Tx > 0
i� hx; Tx < 0

�
:

and

i� hx ¼
i� hx; Tx > 0
iþ hx; Tx < 0

�
:

and similarly for the voxels j, k, with hy and hz. Eqs. B.1,B.3,B.4 are
solved iteratively using the successive over-relaxation (SOR) meth-
od (Press et al., 1988), which is a numerical method used to speed
up convergence of the Gauss–Seidel method for solving a linear sys-
tem of equations. With a good relaxation factor, SOR can require
half as many iterations as the Gauss–Seidel method. Experimentally
we chose a relaxation factor of 1.28 for Eq. (B.1) and 1.2 for Eqs.
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(B.3) and (B.4). This produces a cortical thickness map (Fig. 2f)
where all the voxels in the GM grid are tagged with the thickness
measured along the streamline crossing through this point.
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